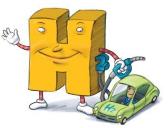


VŠB TECHNICKÁ

|||| UNIVERZITA
OSTRAVA

www.vsb.cz

Energy Research Centre



Hydrogen region?? Together!!! UNITY & UNIQUENESS!!

Hydrogen activities - hydrogen valley - Moravian-Silesian Region

- Change of busses CNG to H2 buses
 - Minus 800 000 000,- CZK per year
 - We don't have station for H2
 - We don't have stable production of H2
 - Future Optimistic version 120 H2 big buses, 150 H2 small buses, 8 H2 HUB

Hydrogen activities at the Energy Research Centre

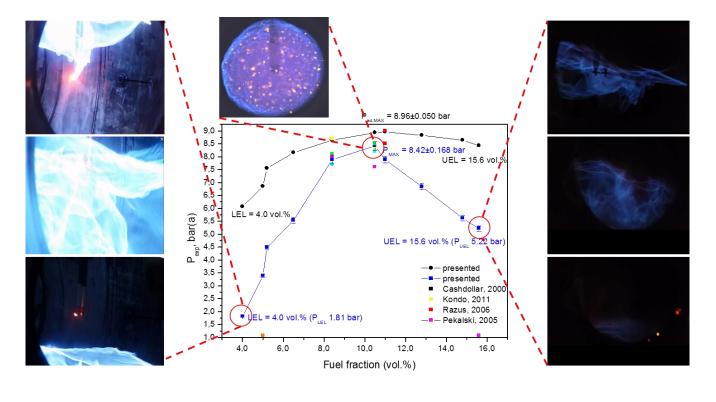
Karel Borovec,

Head of testing laboratory

Energy Research Centre

Outline for today's presentation

- Determination of technical safety parameters
- Process safety and methodology
- Separation of hydrogen from proces gases
- Hydrogen battery system for households
- Greeen innovation in industry/hydrogen mobility
- H₂ station concept in Ostrava
- Purity H2 and metalhydride


Hydrogen safety properties

- Explosion range (upper and lower explosion limits)
- Limiting oxygen concentration
- Minimum ignition energy

Leve

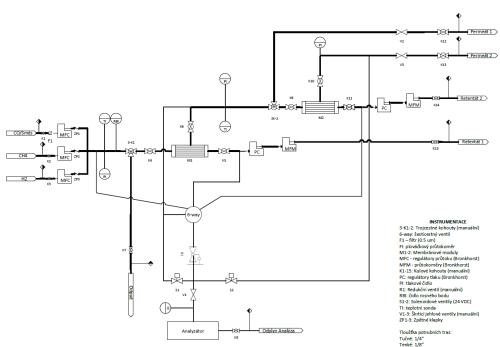
Process safety and methodology

The goals of safety planning are to:

- identify hazards
- evaluate risks by considering the likelihood and severity/consequence of an incident associated with the hazards
- minimize the risks associated with a project/facility

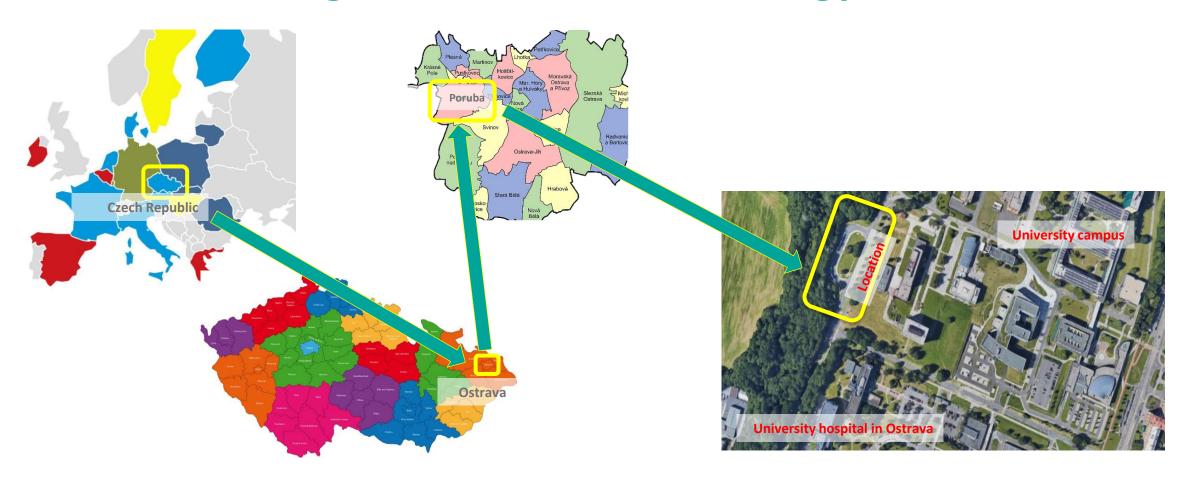
To achieve these goals, various hazard analysis and risk assessment techniques are used, in conjunction with safety reviews.

Common methods employed by those involved in systems safety today include:

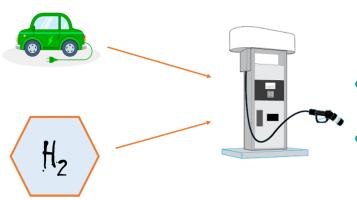

- Hazard and operability studies (HAZOPs)
- Failure modes effects and criticality analysis (FMECA)
- Preliminary hazards analysis (PHA)
- Fault tree analysis (FTA)
- Event tree analysis (ETA)

Separation of hydrogen from process gases

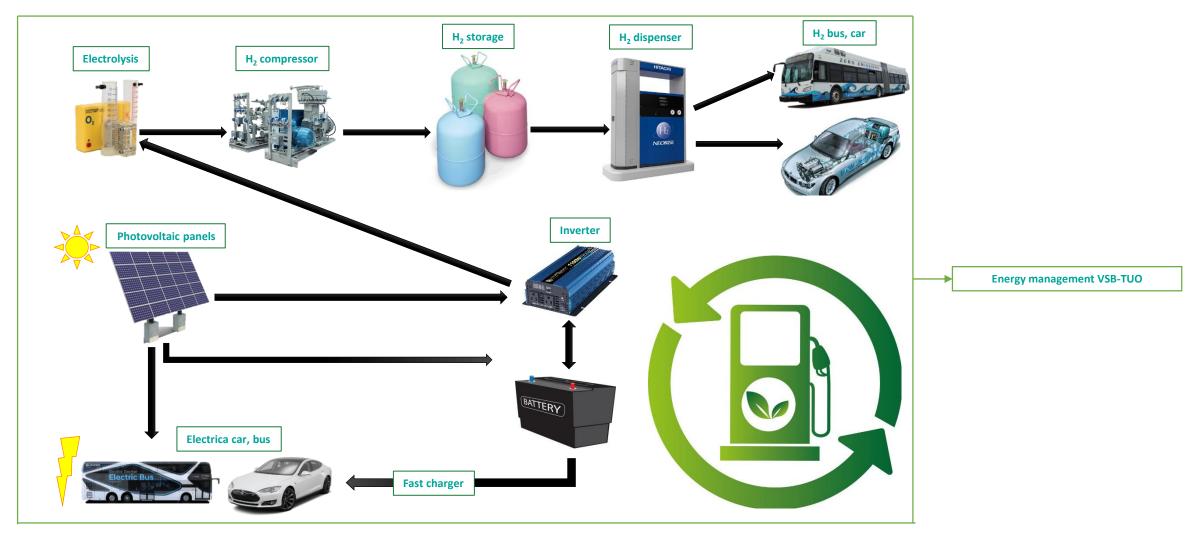
- Development of innovative hydrogen purification technology based on membrane systems
- Verification the separation properties of membrane modules on prepared mixtures
- Testing hydrogen admixture for gas applications
- Development of technology to separate hydrogen from low-concentration hydrogen streams


Autonomus system for green home

- Electrolysis system
- Hydrogen storage
- Fuel cell power system



The smart fuelling station from solar energy

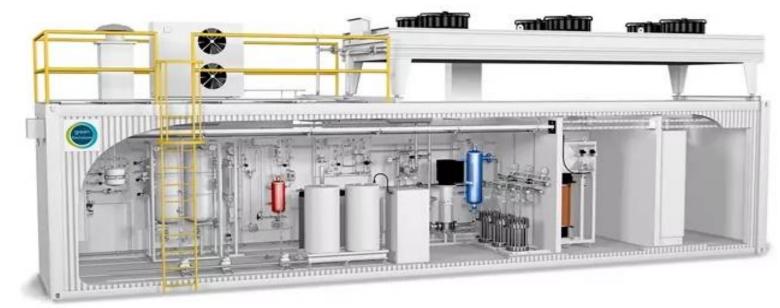

Location: Along the border of University campus opposite the biggest hospital in Ostrava

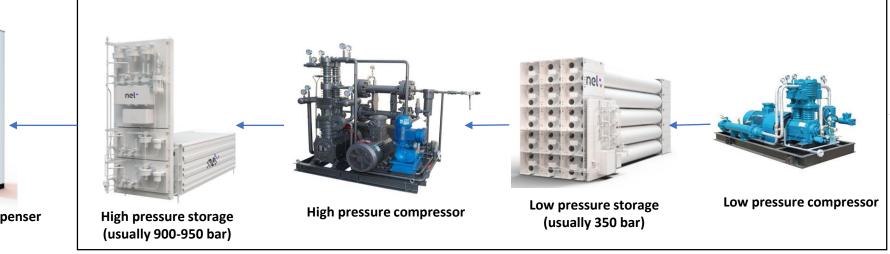
The fuelling station concept description

- The Fuelling Station will be connected to the University Solar Power Station which is operated on the roofs of the university campus (approx. 800 kWp).
- Hydrogen for cars and buses.
- Fast Combined Charging Stations for Electric Vehicles (with batteries accumulation).
- Pilot Fuelling Station application will be connected to university energy management for operating optimisation.
- Real operation-open for public, R&D applications.

The overall process scheme of the technology

VSB TECHNICAL


Hydrogen technology


Hydrogen technology

CONTAINER 1: PEM electrolyzer

PEM Electrolyser		
Nominal production rate of H2 H2 storage	100-150 kg/24h 200 kg	
Production Capacity Dynamic Range	0-100%	
Power Consumption by System	5-6 kWh/m³	
Purity	99.9998%	
Delivery Pressure	30 MPa	
Electrolyte	Proton Exchange Membrane (PEM) – Caustic Free	

CONTAINER 2: Compression and storage of H2

Hydrogen – analysis technology

System for checking purity of H2

LAYOUT FROM SONIC NOZZLE TO ProCeas ANALYZER Sonic nozzle Sample transfer line 1-201/h @ PAtm 110/220V 50/60 Hz 3A 2µm filter sin-ProCeas stainless steel Exhaust PROCESS Air conditioned room Pump (keyboard, mouse, datas...)

Measured components in H2

COMPONENT	ISO 14687-2 LIMITS (ppm)	LOD ProCeas®A(ppm)
H20	5	0,01
CH4	2	0,001
02	5	1
CO2	2	0,2
CO	0,2	0,001
H2S	0,004	0,001
НСНО	0,01	0,001
HCO2H	0,2	0,005
NH3	0,1	0,001
HCL	0,05	0,001

Hydrogen – analysis technology

System for checking purity of H2 – solid particles

Measured components in H2

Adsorption H2 on surface of metalhydride

GAS PRO V2 (ETHERNET RIO)

Sieverts-type gas sorption analyzer, the GASPRO v2 is a fully au-tomated instrument for making Pressure-Composition

Temperature Isotherms with High Accuracy pressure sensors for a variety of gasses: CO2, Hydrogen, Deuterium, Methane, n-Alcanes from C2 to C6, Nitrogen, Argon, Helium and Neon.

Thank you for your attention

Karel Borovec karel.borovec@vsb.cz +42060356592